# University Department of Chemistry B.R.A. Bihar University, Muzaffarpur.

## **Question Bank**

**Subject:** Chemistry, **Course:** B.Sc.(H), **Year:** Part 1

Paper: I

#### Group-A

#### **Unit-1 (Gaseous state)**

- Q.1. Kinetic energy per mole of an ideal gas
- (a) is proportional to temperature (b) inversely proportional to temperature
- (c) is independent of temperature (d) is zero at 0°C
- Q.2.The temperature of a sample of a gas is raised from 127°C to 527°C. The average kinetic energy of the gas
- (a) does not change (b) is doubled (c) is halved (d) cannot be calculated
- Q.3. The compressibility factor for an ideal gas is
- (a) 1.5 (b) 1.0 (c) 2.0 (d) 0
- Q.4. The compressibility factor Z is given by
- (a)  $Z = PV/RT^2$  (b) Z = PV/2RT (c) Z = PV/RT (d) Z = 2PV/RT
- Q.5. The temperature above which a gas cannot be liquefied is known as
- (a) inversion temperature (b) critical temperature (c) neutral temperature (d) Curie temperature
- Q.6. Vander Waals gas equation is used for
- (a) real gas (b) ideal gas (c) both (d) vapour
- Q.7. In Vander Waals equation 'a' signifies
- (a) Intermolecular attraction (b) Intramolecular attraction (c) attraction between molecules and wall of container (d) volume of molecule
- Q.8. A helium atom is two times heavier than a hydrogen molecule at 298 K, the averagekinetic energy of helium is
- (a) two times that of hydrogen molecules (b) same as that of hydrogen molecules
- (c) four times that of hydrogen molecules (d) half that of hydrogen molecules

- Q.9. Vander Waals real gas act as an ideal gas
- (a) high temperature and low pressure (b) low temperature and high pressure
- (c) high temperature and high pressure (d) low temperature and low pressure
- Q.10. The unit of Vander Walls constant 'a' is
- (a) L<sup>2</sup>atm mol<sup>-1</sup> (b) L<sup>3</sup>atm mol<sup>-1</sup> (c) L atm mol<sup>-1</sup> (d) atm mol<sup>-1</sup>
- Q.11. A gas deviates from ideal behaviour at a high pressure because its molecules
- (a) have kinetic energy (b) are bounded by covalent bond (c) attract one another (d) show Tyndall effect
- Q.12. At N.T.P. 1 mole of gas occupied a volume equal to
- (a) 11.2 L (b) 22.4 L (c) 1.12 L (d) 2.24 L
- Q.13. The unit of Vander Waals constant 'b' is
- (a) L mol<sup>-1</sup> (b) L<sup>2</sup> mol<sup>-1</sup> (c) L mol (d) L mol<sup>-2</sup>
- Q.14. The correct relation between Boyle's temperature (T<sub>B</sub>) and Vander Waals constants are
- (a)  $T_B = a/Rb$  (b)  $T_B = a/2Rb$  (c)  $T_B = b/Ra$  (d)  $T_B = 2a/Rb$
- Q.15. The correct relation between critical volume (V<sub>C</sub>) and Vander Waals constants are
- (a)  $V_C = 3b$  (b)  $V_C = 2b$  (c)  $V_C = b$  (d)  $V_C = 4b$
- Q.16. At critical constant, the value of compressibility factor of 1 mole of real gas is equal to
- (a) 0.235 (b) 0.375 (c) 0.567 (d) 0.425
- Q.17. The correct statement about critical temperature is
- (a) It is different for different gases (b) same for all gases (c) it is greater than room temperature (d) all
- Q.18. Which of following is not the value of R
- (a) 1.99 cal K<sup>-1</sup> mol<sup>-1</sup> (b) 0.0821 L atm K<sup>-1</sup> mol<sup>-1</sup> (c) 9.8 kcal K<sup>-1</sup> mol<sup>-1</sup> (d) 8.3 J K<sup>-1</sup> mol<sup>-1</sup>
- Q.19. The correct relation between critical temperature ( $T_c$ ) and Vander Waals constants are
- (a)  $T_C = 8a/27Rb$  (b)  $T_C = a/27Rb$  (c)  $T_C = 8b/27Ra$  (d)  $T_C = 8a/Rb$
- Q.20. The critical temperature of a gas is that temperature
- (a) above which it cannot remain as a gas (b) above which it cannot be liquefied by pressure
- (c) at which it solidifies (d) at which volume of gas becomes zero
- Q.21. The correct relation between critical pressure (P<sub>C</sub>) and Vander Waals constants are
- (a)  $P_C = 8a/27b^2$  (b)  $P_C = a/b^2$  (c)  $P_C = a/27b^2$  (d)  $P_C = a/27Rb^2$
- Q.22. The correct form of Vander Waals equation of one mole of real gas is
- (a)  $(P + a/V^2)(V-b) = RT$  (b)  $(P + a/V^2)(V-b) = RT^2$
- (c)  $(P + a/V)(V-b) = RT (d) (P + a/V^2)(V^2-b) = RT$

- Q.23. The Vander Waals constant of a gas are,  $a = 0.751 L^2 atm mol^{-1}$  and  $b = 0.0226 L mol^{-1}$ . What is value of critical volume of gas?
- (a) 0.0678 L mol<sup>-1</sup> (b) 0.0339 L mol<sup>-1</sup> (c) 0.0456 L mol<sup>-1</sup> (d) 0.234 L mol<sup>-1</sup>
- Q.24. Which is not true in case of ideal gas?
- (a) It cannot be converted into liquid (b) There is no interaction between its molecules
- (c) All the molecules of gas move with the same speed (d) At a given temperature PV is proportional to the amount of the gas.
- Q.25. The values of van der Waals constant 'a' for the gases  $O_2$ ,  $N_2$ ,  $NH_3$  and  $CH_4$ are 1.36, 1.39, 4.17 and 2.253  $L^2$ atm mole<sup>-2</sup> respectively. The gas which can most easily be liquefied is (a)  $O_2$  (b)  $N_2$  (c)  $NH_3$  (d)  $CH_4$

#### **Unit-2 (Liquid state)**

- Q.26. On increasing temperature of liquid, its surface tension
- (a) increases (b) decreases (c) do not change (d) none of these
- Q.27. With increase in temperature the fluidity of liquids
- (a) increases (b) decreases (c) do not change (d) none of these
- Q.28. The rise of liquid in a capillary tube is due to
- (a) viscosity (b) osmosis (c) diffusion (d) surface tension
- Q.29. The viscosity of which liquid is maximum?
- (a) water (b) glycol (c) acetone (d) ethanol
- Q.30. Unit of surface tension is
- (a) dyne cm (b) dyne cm<sup>-1</sup> (c) dyne cm<sup>-2</sup> (d) unitless
- Q.31. Parachors of two liquids can be compared by
- (a) their molar volumes (b) their molecular weights (c) their atomic number (d) none of these
- Q.32. Parachor is a property which is
- (a) Additive cum constitutive (b) colligative (c) Additive (d) none of these
- Q.33. For any liquid the number of drops formed per unit volume depend on
- (a) viscosity (b) surface tension (c) upon pressure (d) more
- Q.34. The experimental value of parachor of benzene is
- (a) 107 (b) 206.2 (c) 236 (d) 307
- Q.35. The boiling point of water, ethanol and diethylether are 100°C, 78.5°C and 34.6°C respectively. The intermolecular forces will be in order of
- (a) water> ethanol > diethyl ether (b) ethanol >water >diethyl ether

- (c) diethyl ether >water >ethanol (d) diethyl ether >ethanol >water
- Q.36. The unit of coefficient of viscosity is
- (a) dyne cm<sup>-1</sup> sec (b) dyne cm<sup>-2</sup> sec (c) dyne cm<sup>-2</sup> sec<sup>-1</sup> (d) dyne<sup>2</sup> cm<sup>-2</sup> sec
- Q.37. The unit of coefficient of viscosity is also express in poise. 1 poise is equal to
- (a) 10<sup>-1</sup> kg m<sup>-1</sup> sec<sup>-1</sup> (b) 10<sup>-2</sup> kg m<sup>-2</sup> sec<sup>-1</sup> (c) kg m<sup>-1</sup> sec<sup>-1</sup> (d) 10<sup>-2</sup> kg m<sup>-1</sup> sec<sup>-1</sup>
- Q.38. The effect of temperature on viscosity of liquid is
- (a) increases (b) decreases (c) do not change (d) none of these
- Q.39. The effect of pressure on viscosity of liquid is
- (a) increases (b) decreases (c) do not change (d) none of these
- Q.40. Water boils at lower temperature on high altitudes because
- (a) atmospheric pressure is low there (b) atmospheric pressure is high there
- (c) water is weakly hydrogen bonded there (d) water is pure form is found there
- Q.41. Normal boiling point of a liquid is that temperature at which vapour pressure of the liquid is equal to
- (a) 0 (b) 380 mm Hg (c) 760 mm Hg (d) 100 mm Hg
- Q.42. Mark the statement which is correct?
- (a) Surface tension of liquid increases with temperature
- (b) Addition of chemicals reduces the surface tension of a liquid
- (c) Stalagmometer is used for measuring viscosity of the liquid
- (d) Viscosity of a liquid does not depend on the intermolecular forces
- Q.43. Liquid in which Trouton's rule is not obey
- (a) Water (b) Benzene (c) Carbon tetrachloride (d) Cyclohexane
- Q.44. The ratio of molar heat of vaporisation and boiling point of a liquid is constant (nearly  $85-88 \text{ J K}^{-1} \text{ mol}^{-1}$ ). This is known as
- (a)Ostwald's rule (b) Trouton's rule (c) Phase rule (d) Vont Hoff rule
- Q.45. Which of the following does not decrease with rise in temperature?
- (a) Density (b) Surface tension (c) Vapour pressure (d) Viscosity
- Q.46. Liquids are similar to gases because
- (a) bothpossess the property of flowing and take the volume of their containers
- (b) both diffuse and take the shape of their containers
- (c) both are readily compressible and diffuse
- (d) both are capable of infinite expansion
- Q.47. Which statement is not correct?
- (a) Liquids diffuse slowly than the gases.

- (b) During evaporation of liquids heating is always caused.
- (c) Vapour pressure of a liquid rises with rise in temperature.
- (d) Viscosity of liquid decreases with rise in temperature.
- Q.48. The reciprocal of viscosity is known as
- (a) Anti viscosity (b) intrinsic viscosity (c) Reduced viscosity (d) Fluidity
- Q.49. The following is a method to determine the surface tension of liquids
- (a) Single capillary method (b) refractometric method
- (c) polarimetric method (d) boiling point method
- Q.50. Which of following statement regarding liquid is not correct?
- (a) The vapour pressure of a liquid increases in the presence of a non-volatile impurity.
- (b) At the normal boiling point, the vapour pressure of a liquid is 1 atm.
- (c) The vapour pressure of liquid increases with increase in temperature.
- (d) Relative lowering of vapour pressure is a colligative property.

#### **Unit-3 (Phase equilibrium)**

- Q.51. The phase rule was given by
- (a) Freundich (b) Willard Gibbs (c) Langmuir (d) Helmholtz
- Q.52. Phase rule states

(a) 
$$F = C - P + 2$$
 (b)  $F = C + P - 2$  (c)  $F = P + C + 2$  (d)  $F + C + P = 2$ 

- Q.53. The triple point is the temperature where
- (a) three phases are in equilibrium (b) the number of degree of freedom is three
- (c) three component are in equilibrium (d) none of these
- Q.54. A triple point is
- (a) trivariant (b) bivariant (c) invariant (d) tetravariant
- Q.55. In a one component system the number of phases at triple point are
- (a) 3 (b) 2 (c) 1 (d) 0
- Q.56. The maximum number of phases in a one component system is
- (a) 0 (b) 1 (c) 2 (d) 3
- Q.57. The phase rule is applicable to
- (a) homogeneous system (b) heterogeneous system (c) both (d) none of these
- Q.58. How many solid phases are present in sulphur system?
- (a) 1 (b) 2 (c) 3 (d) zero
- Q.59. How many degree of freedom are there at a point where three phases meet?
- (a) 1 (b) 0 (c) 3 (d) 2

- Q.60. There cannot be a quadrupole point one phase digram for one component system because the number of degree of freedom cannot be
- (a) 3 (b) -1 (c) 0 (d) 2
- Q.61.  $CaCO_3 \rightleftharpoons CaO + CO_2$  system contains the components
- (a) 1 (b) 2 (c) 3 (d) 4 (b)
- Q.62. Number of phases in  $CaCO_3 \rightleftharpoons CaO + CO_2$  system is
- (a) 1 (b) 2 (c) 3 (d) 4 (b)
- Q.63. The degree of freedom in ice  $\rightleftharpoons$  water  $\rightleftharpoons$  vapour system is
- (a) 1 (b) 2 (c) 3 (d) 0
- Q.64. Number of component in ice ⇔water ⇔vapour system is
  - (a) 1 (b) 2 (c) 3 (d) 4 (a)
- Q.65. The temperature at which the relative stability of two phases of an element changes is called
- (a) triple point (b) transition point (c) melting point (d) eutectic point
- Q.66. How many components and maximum phases are present in KI-H<sub>2</sub>O system?
- (a) 2, 4 (b) 3, 4 (c) 1, 2 (d) 2, 2
- Q.67. Solid KI, ice and solution are present at a point, the degree of freedom at this point is
- (a) 1 (b) 2 (c) 0 (d) 4
- Q.68. Zn-Mg system is
- (a) congruent melting point (b) incongruent melting point (c) simple eutectic (d) none of these
- Q.69. Number of phases in ice ⇔water ⇔vapour system is
- (a) 1 (b) 2 (c) 3 (d) 4
- Q.70. At eutectic point, number of degree of freedom is
- (a) 1 (b) 2 (c) 0 (d) 4
- Q.71. What is number of phase in mixture of nitrogen and hydrogen gases
- (a) 1 (b) 2 (c) 0 (d) 4
- Q.72. Congruent melting point is
- (a) temperature at which solid and liquid phase of compound has same composition
- (b) temperature at which solid starts to melt
- (c) temperature at which one solid phase transform into another solid phase
- (d) none of above
- Q.73. Which of following do not come in congruent melting point system?
- (a) Zn-Mg (b) FeCl<sub>3</sub>-H<sub>2</sub>O (c) Al-Mg (d) Na-K

- Q.74. Which of following do not come in incongruent melting point system?
- (a) picric acid-benzene (b) gold-antimony (c) KI-water (d) Na-K
- Q.75. The reason of efflorescence is
- (a) Dissociation pressure of hydrated crystal is higher than the partial pressure of water vapour in the atmosphere at the room temperature.
- (b) Substance is more soluble in water, and vapour pressure of this solution is less than the partial pressure of water vapour in the atmosphere at the room temperature.
- (c) both (d) none of above

#### **Unit-4 (Electrical transport)**

- Q.76. Electrolytic conduction is due to the movement of which of following?
- (a) Molecules (b) Atoms (c) Ions (d) Electrons
- Q.77. Which of the following is the unit of molar conductance?
- (a) mho mol<sup>-1</sup> (b) mho cm<sup>2</sup>mol<sup>-1</sup> (c) mho cm<sup>-1</sup>mol<sup>-1</sup> (d) mho cm<sup>-2</sup>mol<sup>-1</sup>
- Q.78. The units of specific conductance are
- (a) ohm cm (b) ohm cm<sup>-1</sup> (c) ohm<sup>-1</sup> (d) ohm<sup>-1</sup> cm<sup>-1</sup>
- Q.79. Which of the following equations is correct?
- (a) Cond. = sp. cond. x cell constant
- (b) Eq. cond. = sp. cond. x cell constant
- (c) Cond. = molar cond. x cell constant
- (d) Cell constant = sp. cond./cond.
- Q 80. The sum of the transport number of anion and cation is equal to
- (a) 1 (b) 0 (c) 0.5 (d) 0.25
- Q.81. The distance between two electrodes of a cell is 3.0 cm and area of each electrode is 6.0
- cm<sup>2</sup>, the cell constant is
- (a) 2.0 (b) 1.0 (c) 0.5 (d) 18
- Q.82. The fraction of total current carried by the cation or anion is termed as
- (a) Fractional number (b) transport number (c) Speed number (d) carrier number
- Q.83. Effect of dilution on molar conductance is
- (a) Increases (b) decreases (c) Do not change (d) none of given
- Q.84. When a strong acid is titrated against a strong base the end point is the point of
- (a) Zero conductance (b) maximum conductance (c) Minimum conductance (d) none of these

- Q.85. Effect of dilution on specific conductance is
- (a) Increases (b) decreases (c) Do not change (d) none of given
- Q.86. Kohlraush's law is used in calculation of molar conductance at infinite dilution of
- (a) Strong electrolyte (b) Weak electrolyte (c) both (d) none of given
- Q.87. At infinite dilution, the molar conductance of CH<sub>3</sub>COONa, HCl and CH<sub>3</sub>COOH are 91, 426 and 391 mho cm<sup>2</sup> mol<sup>-1</sup> respectively at 25°C. The molar conductance of NaCl at infinite dilution will be
- (a) 126 (b) 209 (c) 391 (d) 908
- Q.88. Which of the following solutions of KCl has the lowest value of specific conductance?
- (a) 1 M (b) 0.1 M (c) 0.01 M (d) 0.001 M
- Q.89. Which of the following solutions of KCl has the lowest value of molar conductance?
- (a) 1 M (b) 0.1 M (c) 0.01 M (d) 0.001 M
- Q.90. Specific conductance of decimolar solution of KCl at 18°C is 1.12 S m<sup>-1</sup>. The resistance of a conductivity cell containing the solution at 18°C was found to be 55 ohm. The cell constant is
- (a)  $30.3 \text{ m}^{-1}$  (b)  $61.6 \text{ m}^{-1}$  (c)  $16.6 \text{ m}^{-1}$  (d)  $81.5 \text{ m}^{-1}$
- Q.91. The specific conductance of 0.2 M KCl is  $2.48 \times 10^{-2} \text{ S cm}^{-1}$ . The molar conductance will be
- (a) 124 S-cm<sup>2</sup>-mol<sup>-1</sup> (b) 62 S-cm<sup>2</sup>-mol<sup>-1</sup> (c) 12.4 S-cm<sup>2</sup>-mol<sup>-1</sup> (d)0.124 S-cm<sup>2</sup>-mol<sup>-1</sup>
- Q.92. If the specific conductance and conductance of a solution is same, then its cell constant is
- (a) 0 (b) 10 (c) 100 (d) 1
- Q.93. At infinite dilution when dissociation of an electrolyte is complete each ion makes a definite contribution towards the molar conductance. This is statement of
- (a) Debye-Huckel law (b) Voltaic law (c) Kohlrausch's law (d) Faraday's law
- Q.94. Electric conductance is direct measure of
- (a) concentration (b) resistance (c) current (d) none of these
- Q.95. An increase in molar conductance of a strong electrolyte with dilution is mainly due to
- (a) increase in ionic mobility of ions (b) 100% ionisation of electrolyte at normal dilution
- (c) increase in both (d) increase in number of ions.
- Q.96. The cell constant of a given cell is 0.367 cm<sup>-1</sup>. The resistance of a solution placed in this cell is measured to be 31.6 ohm. The conductivity of the solution (in S cm<sup>-1</sup>) is
- (a) 11.6 (b) 0.031 (c) 86.15 (d) 0.0116
- Q.97. Unit of ionic mobility is

- (a) m<sup>2</sup> sec<sup>-1</sup> volt<sup>-1</sup> (b) m sec<sup>-1</sup> (c) m sec<sup>-1</sup> volt (d) m sec<sup>-1</sup> volt<sup>-1</sup>
- Q.98. Ionic conductivity of Na+ is 50 and that of OH- is 198. Molar conductance of NaOH is
- (a) 148 (b) 248 (c) -148 (d) -248
- Q.99. The unit ohm<sup>-1</sup> is used for
- (a) molar conductance (b) specific conductance (c) conductance (d) none of these
- Q.100. Which one of the following has the highest molar conductance?
- (a) Diamminedichloroplatinum (II) (b) Tetraamminedichlorocobalt (III) chloride
- (c) potassiumhexacyanoferrate (II) (d) potassium hexacyanoferrate (III)

## Group B

## (Periodic Table)

| Q1. | Which of the following elements is most electronegative?                         |                                                      |  |  |  |  |
|-----|----------------------------------------------------------------------------------|------------------------------------------------------|--|--|--|--|
|     | (a) N                                                                            | (b) O                                                |  |  |  |  |
|     | (c) Cl                                                                           | (d) F                                                |  |  |  |  |
| Q2. | Which of the following ion is largest?                                           |                                                      |  |  |  |  |
|     | (a) Al <sup>+3</sup>                                                             | (b) $Mg^{+2}$                                        |  |  |  |  |
|     | (c) $N^{-3}$                                                                     | ) O <sup>-2</sup>                                    |  |  |  |  |
| Q3. | Which of the following element has max                                           | ximum electron affinity ?                            |  |  |  |  |
|     | (a)Se                                                                            | (b) O                                                |  |  |  |  |
|     | (c) Te                                                                           | (d) S                                                |  |  |  |  |
| Q.4 | Which of the following statement is not correct?:                                |                                                      |  |  |  |  |
|     | (a) Ionic mobility of Na <sup>+</sup> (aq) is greater than Mg <sup>2+</sup> (aq) |                                                      |  |  |  |  |
|     | (b) The E.A. of 'F' atom is more than 'Cl' atom                                  |                                                      |  |  |  |  |
|     | (c) Second I.P. of 'B' atom is greater than that of 'C' atom                     |                                                      |  |  |  |  |
|     | (d) I.E. of $O^-$ is less than that of 'O'                                       | atom.                                                |  |  |  |  |
| Q.5 | Which of the following species of Mn has lowest electronegativity?               |                                                      |  |  |  |  |
|     | (a) Mn(II)                                                                       | (b) Mn(IV)                                           |  |  |  |  |
|     | (c) Mn(VI)                                                                       | (d) Mn(VII)                                          |  |  |  |  |
| Q.6 | The E.N. of H, X, O are 2.1, 0.8 and of the H–O–X, that is :                     | d 3.5 respectively comment on the nature<br>compound |  |  |  |  |
|     | (a) Basic                                                                        | (b) Acidic                                           |  |  |  |  |
|     | (c) Amphoteric                                                                   | (d) Can't be predicted                               |  |  |  |  |
| Q.7 | Choose the <b>correct</b> order of the following                                 | owing according to property:                         |  |  |  |  |
|     | (a) $N-H > Sb-H > As-H > P-H$                                                    | :Polarity order                                      |  |  |  |  |
|     | (b) $Mg^{2+}(aq) > Sr^{2+}(aq) > Ba^{2+}(aq)$                                    | :Hydrated radius order                               |  |  |  |  |
|     |                                                                                  |                                                      |  |  |  |  |

|      | (c) $Mg^{2+}(aq) > Si$                                                                    | <sup>-2+</sup> (aq) > Ba <sup>2+</sup> (ad | q) :Ionic mobility (                      | order                              |  |  |  |
|------|-------------------------------------------------------------------------------------------|--------------------------------------------|-------------------------------------------|------------------------------------|--|--|--|
|      | (d) NaF > MgO >                                                                           | SrO                                        | :Lattice energy or                        | :Lattice energy order              |  |  |  |
| Q.8  | Which of the following process is associated with best possibility of the energy release. |                                            |                                           |                                    |  |  |  |
|      | (a) Li $\rightarrow$ Li <sup>+</sup> + e                                                  | -                                          | (b) $O^- + e^- \rightarrow$               | (b) $O^- + e^- \rightarrow O^{2-}$ |  |  |  |
|      | (c) $Cl^++e^-\rightarrow Cl$                                                              |                                            | (d) Be + $e^- \rightarrow$                | Be <sup>-</sup>                    |  |  |  |
| Q.9  | Choose the <b>incorrect</b> order of the following                                        |                                            |                                           |                                    |  |  |  |
|      | (a) F> Cl > Br                                                                            |                                            | :electronegativ                           | ity                                |  |  |  |
|      | (b) F> Cl > Br                                                                            |                                            | :electron affinit                         | у                                  |  |  |  |
|      | (c) $F_2 > CI_2 > Br_2$                                                                   |                                            | :oxidising powe                           | er                                 |  |  |  |
|      | (d) $Cl_2 > Br_2 > F_2$                                                                   |                                            | :Bond stability                           |                                    |  |  |  |
| Q10. | The correct orde                                                                          | r of first ionizatio                       | n energy is                               |                                    |  |  |  |
|      | (a) Be                                                                                    | (b) B                                      | (c) N                                     | (d) O                              |  |  |  |
|      | (a) a>b>c>d                                                                               |                                            | (b) d>c>a>b                               |                                    |  |  |  |
|      | (c) b>a>c>d                                                                               |                                            | (d)c>d>a>b                                |                                    |  |  |  |
| Q11. | The correct set of isoelectronic species is                                               |                                            |                                           |                                    |  |  |  |
|      | (a) CO &CO <sub>2</sub>                                                                   |                                            | (b) H <sub>2</sub> O & H <sub>2</sub> O   | 2                                  |  |  |  |
|      | (c) CO & N <sub>2</sub>                                                                   |                                            | (d)CN- & NO                               |                                    |  |  |  |
| Q12. | The atomic radii of Fluorine and Neon (in Angstrom) respectively will be                  |                                            |                                           |                                    |  |  |  |
|      | (a) 0.72 &0.72                                                                            |                                            | (b) 0.72                                  | & 1.60                             |  |  |  |
|      | (c) 1.60 & 1.60                                                                           |                                            | (d)0.82                                   | & 0.82                             |  |  |  |
| Q13  | Which one of the following is correct order of the size of iodine species?                |                                            |                                           |                                    |  |  |  |
|      | (a) $I > I^- > I^+$                                                                       |                                            | (b) $I > I^+ > I^-$                       |                                    |  |  |  |
|      | (c) $I_{+} > I_{-} > I$                                                                   |                                            | (q) $I_{-} > I > I_{+}$                   |                                    |  |  |  |
| Q14  | What should be the order of size of $H^{-1}$ , $H^{+1}$ and $H$ ?                         |                                            |                                           |                                    |  |  |  |
|      | (a) $H^{+1} < H < H^{-1}$                                                                 |                                            | (b) $H^{+1} < H^{-1} < H$                 |                                    |  |  |  |
|      | (c) $H < H^{+1} < H^{-1}$                                                                 |                                            | (b) H < H <sup>-1</sup> <h<sup>+1</h<sup> |                                    |  |  |  |

| Q15  | The van der Waal's radii of O, N, Cl, F and Ne increase in the order                                                                                                |                                        |                        |                                                                          |  |  |  |
|------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------|------------------------|--------------------------------------------------------------------------|--|--|--|
|      | (a) F, O, N, Ne, 0                                                                                                                                                  | CI                                     | (b) N, O, F, Ne        | (b) N, O, F, Ne, Cl                                                      |  |  |  |
|      | (c) Ne, F, O, N, C                                                                                                                                                  | Cl                                     | (d) F, Cl, O, N,       | Ne                                                                       |  |  |  |
| Q16  | Calculate the bond length of C–X bond, if C–C bond length is 1.54 Å, X–X bond length is 1.00 Å and electronegativity values of C and X are 2.0 and 3.0 respectively |                                        |                        |                                                                          |  |  |  |
|      | (a) 1.00 Å                                                                                                                                                          | (b) 0.77 Å                             | (c) 0.54 Å             | (d) 1.18 Å                                                               |  |  |  |
| Q17  | Which of the foll                                                                                                                                                   | owing should be th                     | e longest bond ?       |                                                                          |  |  |  |
|      | (a) S–H                                                                                                                                                             | (b) O–H                                | (c) N–H                | (d) P–H                                                                  |  |  |  |
| Q18  | An element with least atomic size amongst carbon, nitrogen, boron and beryllium.                                                                                    |                                        |                        |                                                                          |  |  |  |
|      | (a) carbon,                                                                                                                                                         |                                        | (b) beryllium .        | (b) beryllium .                                                          |  |  |  |
|      | (c) nitrogen                                                                                                                                                        |                                        | (d) boron              | (d) boron                                                                |  |  |  |
| Q19. | The correct ionization energy of third period element?                                                                                                              |                                        |                        |                                                                          |  |  |  |
|      | (a) Na > Mg > Al                                                                                                                                                    | > Si                                   | (b) S i>               | Mg > A l> Na                                                             |  |  |  |
|      | (c) Si > Mg > Na                                                                                                                                                    | > AI                                   | (d) Si > 1             | (d) $Si > Al > Mg > Na$                                                  |  |  |  |
| Q20. | The correct ionic size of given species is ?                                                                                                                        |                                        |                        |                                                                          |  |  |  |
|      | (a) F <sup>-</sup> > Br <sup>-</sup> > Cl <sup>-</sup> >                                                                                                            | • S <sup>-2</sup>                      | (b) F <sup>-</sup> > E | (b) F <sup>-</sup> > Br <sup>-</sup> > S <sup>-2</sup> > Cl <sup>-</sup> |  |  |  |
|      | (c) $S^{-2} > Cl^{-} > Br^{-}$                                                                                                                                      | · > F-                                 | (d) Br <sup>-</sup> >  | (d) Br <sup>-</sup> > S <sup>-2</sup> > Cl <sup>-</sup> > F <sup>-</sup> |  |  |  |
| Q21. | Which one is cor                                                                                                                                                    | Which one is correct ionization enegy? |                        |                                                                          |  |  |  |
|      | (a) S > P > As                                                                                                                                                      |                                        | (b) As >               | P > S                                                                    |  |  |  |
|      | (c) P > S > As                                                                                                                                                      |                                        | (d) As >               | (d) As > P > S                                                           |  |  |  |
|      |                                                                                                                                                                     |                                        |                        |                                                                          |  |  |  |

| hich one | is amph  | oteric oxic      | le?                         |
|----------|----------|------------------|-----------------------------|
|          | hich one | hich one is amph | hich one is amphoteric oxid |

(b) 
$$Al_2O_3$$

Q.23 The correct order of covalent nature of following halide is

(c) 
$$BeBr_2 > CaCl_2 > SrCl_2 > BaCl_2$$
 (d)  $BeCl_2 > CaCl_2 > SrCl_2 > BaCl_2$ 

Q.24 IIA group metals form carbonate. The correct decreasing order of thermal stability is

(a) 
$$CaCO_3 > BeCO_3 > BaCO_3 > SrCO_3$$
 (b)  $CaCO_3 > SrCO_3 > BaCO_3 > BeCO_3$ 

Q.25 Boron forms BX<sub>3</sub> type of halides. The correct increasing order of Lewis-acid strength of these halides is

(a) 
$$BF_3 > BCl_3 > BBr_3 > Bl_3$$

(a) 
$$BF_3 > BCl_3 > BBr_3 > Bl_3$$
 (b)  $Bl_3 > BBr_3 > BCl_3 > BF_3$ 

(c) 
$$BF_3 > BI_3 > BCI_3 > BBr_3$$

(d) 
$$BF_3 > BCI_3 > BI_3 > BBr_3$$

The increasing order of electron gain enthalpy with negative sign Q26

(c) 
$$S < O < Te < Se$$

The Incorrect statement among the following is Q27

- (a)  $H_2S$  is more acidic than  $H_2O$ .
- (b)  $H_2S$  is more acidic than  $H_2Se$ .
- (c)  $NH_3$  is more basic than  $PH_3$ . (d)  $PH_3$  is more basic than  $SbH_3$ .

Which one is incorrect about PCI<sub>5</sub> Q28

- (a) gaseous PCl<sub>5</sub>has sp³d hybridization state
- (b)Solid PCI<sub>5</sub> exist as a free covalent molecule

|           | (c) Solid PCI <sub>5</sub> exi    | ists as ionic        | pair [PCl <sub>4</sub> ]                    | + [PCI <sub>6</sub> | <sub>5</sub> ]- |                     |             |                             |
|-----------|-----------------------------------|----------------------|---------------------------------------------|---------------------|-----------------|---------------------|-------------|-----------------------------|
|           | (d) In Solid PCI <sub>5</sub>     | P is in sp           | 3 and sp3d2                                 | hybridi             | zation          | state               |             |                             |
| Q.29      | Which one of the                  | following co         | ompounds                                    | has no              | nzero           | dipole              | momer       | nt ?                        |
|           | (a) BrF <sub>5</sub>              | (b) CIF <sub>3</sub> |                                             | (c) SI              | F <sub>4</sub>  |                     | (d) Xe      | F <sub>2</sub>              |
| Q.30      | Which one of the                  | following h          | nas most ac                                 | cidic na            | ature ?         |                     |             |                             |
|           | (a) SO <sub>2</sub>               | (b) SO <sub>3</sub>  |                                             | (c) M               | nO <sub>2</sub> |                     | (d) Si      | $D_{2}$                     |
| Q31       | Mercury is a liqu                 | ıid at 0°C be        | ecause of                                   |                     |                 |                     |             |                             |
|           | (a) Low high ioni                 | sation energ         | у                                           | (b) w               | eak m           | etallic bo          | onds        |                             |
|           | (c) high heat of h                | ydration             |                                             | (d) hi              | gh hea          | at of sub           | limatior    | า                           |
| Q32       | The ionisation e                  | nergies of tr        | ansition ele                                | ements              | are             |                     |             |                             |
|           | (a) more than p-l<br>elements     | olock eleme          | nts                                         |                     | (b)             | more                | than        | s-block                     |
|           | (c) less than s-bl<br>elements    | ock element          | is                                          |                     | (d)             | more                | than        | p-block                     |
| Q.33      | Which is not Am                   | ohoteric oxid        | de?                                         |                     |                 |                     |             |                             |
|           | (a) $Al_2O_3$                     | (b) SnO              |                                             | (c) Zr              | 10              |                     | (d) Fe      | <sub>2</sub> O <sub>3</sub> |
| Q34.<br>c | The internuclea ovalent radius is | r distance b         | etween two                                  | ) H ato             | ms in           | H <sub>2</sub> mole | ecule is    | 74 pm. Its                  |
| (6        | a)37 pm                           | (b) 148 pr           | n                                           | (c)                 | 18.5            | pm                  | (d)         | 25 pm                       |
| Q35.      | Which is correct                  | about size?          | ?                                           |                     |                 |                     |             |                             |
|           | a) Na+ > Na                       |                      | Ca++                                        | (c)                 | Cl-<            | Cl                  | (d)         | C < N                       |
|           | Al <sup>+++</sup> is isolectro    |                      |                                             |                     |                 |                     |             |                             |
| •         | a) Al                             | (b) S <sup>4+</sup>  |                                             | ` ,                 | Na⁺<br>-        |                     | (d)         | $N^{2-}$                    |
| _         | First ionisation 6                |                      | 3 as compa                                  |                     |                 |                     | ( I)        |                             |
| •         | a) Low                            | (b) High             | alpy is pos                                 | ` ,                 | Sam             | е                   | (d)         | times                       |
|           | Highest third ior<br>a)1s², 2s²   |                      | ыну із роз<br>5 <sup>2</sup> , 2 <i>р</i> 1 |                     | -               | 2p <sup>4</sup>     | $(d)1s^{2}$ | . 2s². 2p³                  |
|           | ., ,                              | (15) = 5 , = 5       | , –                                         | (0) =0              | , ,             | -P                  | (0.)_0      | , , _p                      |
| Q39.      | The correct orde                  | er for atomic        | radius is                                   |                     |                 |                     |             |                             |
| (6        | a) O < F < Ne                     | (b) C                | ) > Ne > F                                  |                     |                 |                     |             |                             |
| (0        | c) O > F > Ne                     | (d) F                | < 0 < Ne                                    |                     |                 |                     |             |                             |
| Q40.      | Isoelectronic sp                  | ecies are            |                                             |                     |                 |                     |             |                             |
| (6        | a) Neutral or charg               | jed species          | differing in                                | effectiv            | ve nuc          | lear cha            | ırge        |                             |
| (         | b) Charged or neu                 | tral species         | differing in                                | nuclea              | r char          | ae                  |             |                             |

|     | ` '                                                                                | •                            | ed species having sam<br>e same mass number   | e numl  | per of neutron | S      |                   |        |
|-----|------------------------------------------------------------------------------------|------------------------------|-----------------------------------------------|---------|----------------|--------|-------------------|--------|
| Q41 | Q41. Among $N^{-2}$ , $O^{-2}$ , $S^{-2}$ and $F^-$ the ion with smallest radii is |                              |                                               |         |                |        |                   |        |
|     | (a)                                                                                | O <sup>-2</sup>              | (b) S <sup>-2</sup>                           | (c)     | $N^{-3}$       | (d)    | F-                |        |
| Q42 | 2.                                                                                 | Which set is corre           | ect for second ionisation                     | on enth | alpy of N and  | O resp | ective            | ely?   |
|     | (a)                                                                                | 1600 kJ/mol, 170             | 0 kJ/mol                                      | (b)     | 1700 kJ/mol,   | 1600 k | رJ/mo             | l      |
|     | (c):                                                                               | 1800 kJ/mol, 1600            | ) kJ/mol                                      | (d)     | 1700 kj/mol,   | 1400 k | J/mol             |        |
| Q43 |                                                                                    |                              | d and third ionisation respectively. The elem |         | •              | lement | are 2             | 2370,  |
|     | (a)                                                                                | A reactive non-m             | etal                                          | (b)     | A reactive me  | etal   |                   |        |
|     | (c)                                                                                | A noble gas                  |                                               | (d)     | A metalloid    |        |                   |        |
| Q44 | 1.                                                                                 | Most negative ele            | ectron gain enthalpy is                       | posse   | sed by         |        |                   |        |
|     | (a)                                                                                | F                            | (b) Cl                                        | (c)Br   | (d)O           |        |                   |        |
| Q45 | 5.                                                                                 | The correct non-r            | netallic character orde                       | er is   |                |        |                   |        |
|     | (a)                                                                                | Si < C < B                   | (b) Si < B < C                                | (c)     | B < Si < C     | (d)    | B < 0             | C < Si |
| Q46 | 6.                                                                                 | The most acidic of           | oxide is                                      |         |                |        |                   |        |
|     | (a)                                                                                | SO <sub>3</sub>              | (b) SiO <sub>2</sub>                          | (c)     | $Al_2O_3$      | (d)    | Cl <sub>2</sub> O | 7      |
| Q47 | 7.                                                                                 | Highest ionisation           | n enthalpy is possesse                        | ed by   |                |        |                   |        |
| •   | (a)                                                                                | Alkali metals<br>ments       |                                               | •       | (c)Halogens    | (d)f   |                   | block  |
| Q48 |                                                                                    | Covalent radius ms bonded as | is half of the internu                        | uclear  | distance bet   | ween t | WO C              | arbon  |
|     | (A)                                                                                | C – C                        | (b)C = C                                      | (c)     | $C \equiv C$   |        | (d)               | С      |
| Q49 | ð.                                                                                 | Atomic and ionic             | radii are determined fr                       | om      |                |        |                   |        |
|     | (a)                                                                                | Enthalpy datas               |                                               | (c)     | X-ray studies  | 3      |                   |        |
|     | (c)                                                                                | Electronegativity            | values                                        | (d)     | Screw guaze    | !      |                   |        |
| Q50 | ).                                                                                 | Lanthanum belon              | igs to                                        |         |                |        |                   |        |
|     | (a)                                                                                | s-block                      | (b) d block                                   | (c)     | f-block        | (d)    | p-blo             | ck     |
|     |                                                                                    |                              |                                               |         |                |        |                   |        |

## Group B Unit 2: Chemical bonding

51. IF $_7$  has bond pair/s and lone pair/s, respectively-

- a) 7, 0
- b) 2, 3
- c) 5, 2

| d) 4, 3                                                                                                                                                                                       |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 52. Which of the following is not an exception of octet rule?                                                                                                                                 |
| a) BF <sub>3</sub>                                                                                                                                                                            |
| b) PF <sub>5</sub>                                                                                                                                                                            |
| c) CO <sub>2</sub>                                                                                                                                                                            |
| d) IF <sub>7</sub>                                                                                                                                                                            |
| 53. Which of the following molecules has net dipole moment?                                                                                                                                   |
| a) CCl <sub>4</sub>                                                                                                                                                                           |
| b) $C_2H_2$                                                                                                                                                                                   |
| c) $BF_3$                                                                                                                                                                                     |
| d) NH <sub>3</sub>                                                                                                                                                                            |
| 54. PCl <sub>5</sub> molecule has the following geometry-                                                                                                                                     |
| a) Trigonal bipyramidal                                                                                                                                                                       |
| b) Octahedral                                                                                                                                                                                 |
| c) Square planar                                                                                                                                                                              |
| d) Planar triangular                                                                                                                                                                          |
| 55. Which of the following molecules does not contain lone pair of electrons on the central                                                                                                   |
| atom                                                                                                                                                                                          |
| a) NH <sub>3</sub>                                                                                                                                                                            |
| b) PF <sub>5</sub>                                                                                                                                                                            |
| c) H <sub>2</sub> O                                                                                                                                                                           |
| d) SF <sub>4</sub>                                                                                                                                                                            |
| 56. Hydrogen bond is strongest in-                                                                                                                                                            |
|                                                                                                                                                                                               |
| a) S-H•••••O                                                                                                                                                                                  |
| <ul><li>a) S-H••••••O</li><li>b) O-H•••••S</li></ul>                                                                                                                                          |
|                                                                                                                                                                                               |
| b) O-H•••••S                                                                                                                                                                                  |
| b) O-H•••••S<br>c) F-H•••••F                                                                                                                                                                  |
| b) O-H•••••S c) F-H•••••F d) F-H•••••O                                                                                                                                                        |
| <ul> <li>b) O-H•••••S</li> <li>c) F-H•••••F</li> <li>d) F-H•••••O</li> <li>57. What type of hybridization is possible in square planar molecule?</li> </ul>                                   |
| <ul> <li>b) O-H•••••S</li> <li>c) F-H•••••F</li> <li>d) F-H•••••O</li> <li>57. What type of hybridization is possible in square planar molecule?</li> <li>a) sp³d</li> </ul>                  |
| <ul> <li>b) O-H•••••S</li> <li>c) F-H•••••F</li> <li>d) F-H•••••O</li> <li>57. What type of hybridization is possible in square planar molecule?</li> <li>a) sp³d</li> <li>b) dsp²</li> </ul> |
| b) O-H•••••S c) F-H•••••F d) F-H•••••O  57. What type of hybridization is possible in square planar molecule? a) sp³d b) dsp² c) sp³d²                                                        |

| a) HCl                                                                                  |
|-----------------------------------------------------------------------------------------|
| b) HF                                                                                   |
| c) H <sub>2</sub> O                                                                     |
| d) $NH_3$                                                                               |
| 59. Which of the following is not a correct statement?                                  |
| a) The canonical structures have no real existence.                                     |
| b) Every $AB_5$ molecule does in fact have a square pyramid structure.                  |
| c) Multiple bonds are always shorter than the corresponding single bond.                |
| d) The electron deficient molecule can act as Lewis acid.                               |
| 60. In which of the following molecule the central atom has two lone pair of electrons? |
| a) SF <sub>4</sub>                                                                      |
| b) BrF <sub>5</sub>                                                                     |
| c) XeF <sub>4</sub>                                                                     |
| d) SO <sub>2</sub>                                                                      |
| 61. Which of the following have maximum covalent character?                             |
| a) LiI                                                                                  |
| b) LiF                                                                                  |
| c) LiCl                                                                                 |
| d) LiBr                                                                                 |
| 62. Which of the following has co-ordinate bonds?                                       |
| a) $N_2$                                                                                |
| b) CaCl <sub>2</sub>                                                                    |
| c) O <sub>3</sub>                                                                       |
| d) H <sub>2</sub> O                                                                     |
| 63. Lattice energy of an ionic compound depends on-                                     |
| a) Charge of the ion only                                                               |
| b) Size of the ion only                                                                 |
| c) Packing of the ion only                                                              |
| d) Charge on the ion and size of the ion                                                |
| 64. Which of the following is electron deficient molecule?                              |
| a) $C_2H_6$                                                                             |
| b) SiH <sub>4</sub>                                                                     |
| c) $B_2H_6$                                                                             |
|                                                                                         |

| d) PH <sub>3</sub>                                                                                    |
|-------------------------------------------------------------------------------------------------------|
| 65. How many Hydrogen bonded water molecule are associated with CuSO <sub>4</sub> .5H <sub>2</sub> O? |
| a) 1                                                                                                  |
| b) 2                                                                                                  |
| c) 3                                                                                                  |
| d) 4                                                                                                  |
| 66. Which of the following contains ionic covalent and co-ordinate bonds?                             |
| a) NaOH                                                                                               |
| b) NaCl                                                                                               |
| c) NaCN                                                                                               |
| d) NaNC                                                                                               |
| 67. Which of the following compound is expected to have highest lattice energy?                       |
| a) NaCl                                                                                               |
| b) NaBr                                                                                               |
| c) MgF <sub>2</sub>                                                                                   |
| d) MgO                                                                                                |
| 68. Dissociation energy is-                                                                           |
| a) Energy required to change solid state into a gas                                                   |
| b) Energy required to change solid state to a liquid                                                  |
| c) The energy required to break a compound                                                            |
| d) Change in energy when an element forms a compound                                                  |
| 69. A theory which describes chemical bonding is-                                                     |
| a) Dalton's theory                                                                                    |
| b) Valence bond theory                                                                                |
| c) Atomic theory                                                                                      |
| d) Raoult's law                                                                                       |
| 70. The head- to- head overlapping of atomic orbitals forms-                                          |
| a) Sigma bond                                                                                         |
| b) Pi bond                                                                                            |
| c) Covalent bond                                                                                      |
| d) Co-ordinate bond                                                                                   |
| 71. The weak intermolecular forces that is dependent on the distance between atoms and                |
| molecules are-                                                                                        |
| a) Frictional forces                                                                                  |
|                                                                                                       |

| b)                 | Cohesive forces                                                                          |
|--------------------|------------------------------------------------------------------------------------------|
| c)                 | Van der Waals forces                                                                     |
| d)                 | Gravitational forces                                                                     |
| 72. Va             | n der Waals forces are-                                                                  |
| a)                 | Short range forces                                                                       |
| b)                 | Long range forces                                                                        |
| c)                 | Null forces                                                                              |
| d)                 | Depend on the atoms and molecules                                                        |
| 73. Th             | e types of hybridization on the five carbon atoms from left to right in the molecule     |
| CH <sub>3</sub> -C | CH=CH=CH-CH <sub>3</sub> are-                                                            |
| a)                 | sp³,sp²,sp²,sp²,sp³                                                                      |
| b)                 | sp³,sp,sp²,sp²,sp³                                                                       |
| c)                 | sp <sup>3</sup> ,sp <sup>2</sup> ,sp,sp <sup>2</sup> ,sp <sup>3</sup>                    |
| d)                 | sp <sup>3</sup> ,sp <sup>2</sup> ,sp <sup>2</sup> ,sp,sp <sup>3</sup>                    |
| 74. Th             | e force that arise due to the interaction between an instantaneous dipole and an atom or |
| molec              | ule is called-                                                                           |
| a)                 | Van der Waal forces                                                                      |
| b)                 | Gravitational forces                                                                     |
| c)                 | London dispersion forces                                                                 |
| d)                 | Frictional forces                                                                        |
| 75. Bo             | ond angle of SF <sub>4</sub> molecule are likely-                                        |
| a)                 | 89°, 117°                                                                                |
| b)                 | 120°, 180°                                                                               |
| c)                 | 45°, 118°                                                                                |
| d)                 | 117°, 92°                                                                                |
| 76. Th             | e molecule having smallest bond angle is-                                                |
| a)                 | $AsCl_3$                                                                                 |
| b)                 | $SbCl_3$                                                                                 |
| c)                 | $PCl_3$                                                                                  |
| d)                 | $NCl_3$                                                                                  |
| 77. In             | which of the following, the bond angle between two covalent bonds, is maximum?           |
|                    | (a) $H_2O$ (b) $NH_3$ (c) $CO_2$ (d) $CH_4$                                              |
| 78. W              | hat type of bonding exists in $IF_7$ ?                                                   |

|         | (a) Coordinate        | e bond              | (b) Covalent bo                       | ond                                                                                                                                              | (c) Both                                 | (d) Ionic                |
|---------|-----------------------|---------------------|---------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------|--------------------------|
| bond    |                       |                     |                                       |                                                                                                                                                  |                                          |                          |
| 79. Th  | e hybridization       | of carb             | on involved in a                      | cetyline is                                                                                                                                      | 5-                                       |                          |
|         | (a) sp <sup>2</sup>   | (b) sp <sup>3</sup> | (c) sp                                | (d)                                                                                                                                              | dsp <sup>2</sup>                         |                          |
| 80. W   | hich of the foll      | owing h             | as maximum cov                        | valent cha                                                                                                                                       | racter?                                  |                          |
|         | (a) LiF               | (b) LiI             | (c) LiBr                              | (c)                                                                                                                                              | LiCl                                     |                          |
| 81. Fo  | or which of foll      | owing l             | ybridization, the                     | e bond ang                                                                                                                                       | gle is maximum?                          |                          |
|         | (a) sp <sup>2</sup>   | (b) sp              | (c) $sp^3$                            | (d)                                                                                                                                              | dsp <sup>2</sup>                         |                          |
| 82. Th  | e shape of ClO        | ) <sub>4</sub> is-  |                                       |                                                                                                                                                  |                                          |                          |
|         | (a) Square pla        | ınar                | (b) Square pyra                       | midal                                                                                                                                            | (c) Tetrahedra                           | al (d) Trigonal          |
| bipyra  | midal                 |                     |                                       |                                                                                                                                                  |                                          |                          |
| 83. Hy  | drogen bond is        | s presen            | ted with -                            |                                                                                                                                                  |                                          |                          |
|         | (a) Dotted line       | e                   | (b) Solid line                        | (c)                                                                                                                                              | Charge on atoms                          | (d) None of the          |
| above   |                       |                     |                                       |                                                                                                                                                  |                                          |                          |
| 84. W   | hat type of hyb       | ridizatio           | on is possible in s                   | square pla                                                                                                                                       | nar molecule?                            |                          |
|         | (a) sp <sup>3</sup> d |                     | (b) dsp <sup>2</sup>                  | (c)                                                                                                                                              | $dsp^3$                                  | (d) $sp^3d^2$            |
| 85. Int | ter-molecular h       | ydroger             | bond exists in-                       |                                                                                                                                                  |                                          |                          |
|         | (a) Salicylic acid    |                     | (b) Water (c) <i>ortho</i> -nitropher |                                                                                                                                                  | ) <i>ortho-</i> nitropheno               | $l$ (d) $CO_2$           |
| 86. W   | hich of the foll      | owing h             | as coordination b                     | ond alon                                                                                                                                         | g with covalent bo                       | nd?                      |
|         | (a) N <sub>2</sub>    |                     | (b) CaCl <sub>2</sub>                 | (c)                                                                                                                                              | $O_3$                                    | (d) $H_2O$               |
| 87. Th  | e correct order       | of bond             | l angle among H                       | <sub>2</sub> O, NH <sub>3</sub> , 0                                                                                                              | CH <sub>4</sub> and CO <sub>2</sub> mole | cules is-                |
|         | (a) $H_2O>NH_3$       | >CH <sub>4</sub> >0 | $CO_2$ (b) $H_2O$                     | <ch<sub>4<cc< td=""><td><math>O_2 &lt; NH_3</math> (c) <math>H_2</math></td><td><math>O &lt; NH_3 &lt; CH_4 &lt; CO_2</math></td></cc<></ch<sub> | $O_2 < NH_3$ (c) $H_2$                   | $O < NH_3 < CH_4 < CO_2$ |
|         | (d) $H_2O>NH_3$       | $>CO_2>0$           | CH <sub>4</sub>                       |                                                                                                                                                  |                                          |                          |
| 88. W   | hich of the foll      | owing a             | ngle related to sp                    | o² hybridiz                                                                                                                                      | zation?                                  |                          |
|         | (a) 90°               |                     | (b) 120°                              | (c)                                                                                                                                              | 180°                                     | (d) 109°                 |
| 89. W   | hich of the foll      | owing n             | nolecule/ion does                     | s not conta                                                                                                                                      | ain unpaired electr                      | on?                      |
|         | (a) $N_2^+$           |                     | (b) O <sub>2</sub>                    | (c)                                                                                                                                              | $O_2^{2-}$                               | (d) $B_2$                |
| 90. W   | hich species ha       | s maxin             | num number of l                       | one pairs                                                                                                                                        | of electrons on the                      | central atom?            |
|         | (a) $ClO_3$           |                     | (b) XeF <sub>4</sub>                  | (c)                                                                                                                                              | SF <sub>4</sub>                          | (d) $I_{3}$              |
| 91. Bo  | ond order of Ox       | ygen m              | olecule is-                           |                                                                                                                                                  |                                          |                          |
|         | (a) 1                 |                     | (b) 2                                 | (c)                                                                                                                                              | 3                                        | (d) 4                    |
| 92 W    | hich of the follo     | owing d             | oesn't exist?                         |                                                                                                                                                  |                                          |                          |

(a) NF<sub>5</sub>

| (b) PCl <sub>5</sub>                                                                      |
|-------------------------------------------------------------------------------------------|
| (c) $SF_6$                                                                                |
| (d) IF <sub>7</sub>                                                                       |
| 93. The number of lone pairs are identical in the pair of-                                |
| (a) $Xe_4F_4$ , $ClF_3$                                                                   |
| (b) XeO <sub>2</sub> F <sub>2</sub> , ICl <sub>4</sub>                                    |
| (c) XeO <sub>2</sub> , ICl <sub>4</sub> -                                                 |
| (d) XeO <sub>4</sub> , ClF <sub>3</sub>                                                   |
| 94. The shape of SF <sub>4</sub> is-                                                      |
| (a) Tetrahedral                                                                           |
| (b) Square planar                                                                         |
| (c) Trigonal bipyramidal                                                                  |
| (d) Octahedral                                                                            |
| 95. The correct order of the mean bond energies in the binary hybrids is-                 |
| (a) $CH_4>NH_3>H_2O>HF$                                                                   |
| (b) NH <sub>3</sub> >CH <sub>3</sub> >H <sub>2</sub> O>HF                                 |
| (c) $HF>H_2O>CH_4>NH_3$                                                                   |
| (d) HF>H <sub>2</sub> O>NH <sub>3</sub> >CH <sub>4</sub>                                  |
| 96. Which molecule has zero bond order?                                                   |
| (a) H <sub>2</sub> <sup>+</sup>                                                           |
| (b) H <sub>2</sub>                                                                        |
| (c) HeH                                                                                   |
| (d) $H_2^-$                                                                               |
| 97. According to MO theory, the bond order of diatomic molecules may be (a), which is not |
| so according to valence bond theory, Here (a) is-                                         |
| (a) Integral                                                                              |
| (b) Two                                                                                   |
| (c) Three                                                                                 |
| (d) Fractional                                                                            |
| 98. Which of the following has a bond order 2.5?                                          |
| (a) HCl                                                                                   |
| (b) CO                                                                                    |
| (c) NO                                                                                    |
| (d) $N_2$                                                                                 |



| (a) Be                                                                                      |
|---------------------------------------------------------------------------------------------|
| (b) Mg                                                                                      |
| (c) Ca                                                                                      |
| (d) Ba                                                                                      |
| 105. In context of beryllium, which one of the following statements is incorrect?           |
| (a) It is rendered passive by nitric acid.                                                  |
| (b) It forms BeC <sub>2</sub> .                                                             |
| (c) Its salts rarely hydrolyse.                                                             |
| (d) Its hydride is electron deficient and polymeric.                                        |
| 106. Compared with alkaline earth metals, the alkali metals have                            |
| (a) smaller ionic radii.                                                                    |
| (b) higher boiling points.                                                                  |
| (c) greater hardness.                                                                       |
| (d) lower ionization energies.                                                              |
| 107. The metallic lustre exhibited by sodium is due to-                                     |
| (a) diffusion of sodium ion                                                                 |
| (b) oscillation of loose electrons                                                          |
| (c) excitation of free protons                                                              |
| (d) none of the above.                                                                      |
| 108. Lime water is an aqueous solution of-                                                  |
| (a) CaCO <sub>3</sub>                                                                       |
| (b) Ca(OH) <sub>2</sub>                                                                     |
| (c) MgCl <sub>2</sub>                                                                       |
| (d) CaSO <sub>4</sub>                                                                       |
| 109. Which of the following among alkaline earth metal does not impart any colour to flame? |
| (a) Ba                                                                                      |
| (b) Mg                                                                                      |
| (c) Ca                                                                                      |
| (d) Sr                                                                                      |
| 110. Which of the following metal ion play important role in muscles contraction?           |
| (a) $K^+$                                                                                   |
| (b) Na <sup>+</sup>                                                                         |
| (c) $Ca^{+2}$                                                                               |
| (d) $Mg^{+2}$                                                                               |

| 111. Which of the following known as the fusion mixture?              |
|-----------------------------------------------------------------------|
| (a) mixture of $Na_2CO_3 + NaHCO_3$                                   |
| (b) Na <sub>2</sub> CO <sub>3</sub> .10 H <sub>2</sub> O              |
| (c) mixture of $K_2CO_3 + Na_2CO_3$                                   |
| (d) NaHCO <sub>3</sub>                                                |
| 112. Hydration enlthalpy of alkali metals-                            |
| (a) increases with increase in ionic radii.                           |
| (b) decreases with increase in ionic radii.                           |
| (c) no effect of increase in ionic radii.                             |
| (d) None of the above.                                                |
| 113. Correct order of hydration enthalpy of alkali metals ion is-     |
| (a) $Li^+ > Na^+ > K^+ > Rb^+ > Cs^+$                                 |
| (b) $Rb^+ > Cs^+ > Li^+ > Na^+ > K^+$                                 |
| (c) $Cs^+ > Rb^+ > K^+ > Na^+ > Li^+$                                 |
| (d) None of the above                                                 |
| 114. Among s-block elements, which element/s show anomalous behavior? |
| (a) Li                                                                |
| (b) Be                                                                |
| (c) Ca                                                                |
| (d) Both (a) & (b)                                                    |
| 115. Li shows diagonal relationship with                              |
| (a) Ca                                                                |
| (b) Mg                                                                |
| (c) Al                                                                |
| (d) Si                                                                |
| 440 P. J.                         |
| 116. Be shows diagonal relationship with                              |
| (a) Al                                                                |
| (b) Mg                                                                |
| (c) Ca                                                                |
| (d) Si                                                                |
| 117. The reactivity of alkali metals with oxygen-                     |
| (a) increases down the group.                                         |

| (b) decreases down the group.                                                            |
|------------------------------------------------------------------------------------------|
| (c) non-reactive.                                                                        |
| (d) none of the above.                                                                   |
| 118. Which atom/ion of alkaline earth metal is present in Chlorophyll?                   |
| (a) Sr                                                                                   |
| (b) Ba                                                                                   |
| (c) Ca <sup>+2</sup>                                                                     |
| (d) $Mg^{+2}$                                                                            |
| 119. Chemical structure of BeCl <sub>2</sub> in solid state is-                          |
| (a) polymeric structure with chloro bridges                                              |
| (b) polymeric structure without chloro bridges                                           |
| (c) dimeric structure without any bridge                                                 |
| (d) monomer.                                                                             |
| 120. Correct statement about BeCl <sub>2</sub> structure is-                             |
| (a) In solid phase, it is a chloro bridged polymeric.                                    |
| (b) In vapour phase, it is a chloro bridged dimer.                                       |
| (c) At higher temperature (~1200 K), it is a triatomic monomer.                          |
| (d) All the above statements are correct.                                                |
| 121. Which one of the following compounds, belonging to s-block elements, is necessarily |
| added in the cement?                                                                     |
| (a) Gypsum                                                                               |
| (b) Bleaching powder                                                                     |
| (c) Baking soda                                                                          |
| (d) None of the above                                                                    |
|                                                                                          |
| 122. In s- block elements, the outer electronic configuration is-                        |
| (a) ns <sup>(1-2)</sup>                                                                  |
| (b) $ns^2np^{(1-6)}$                                                                     |
| (c) $(n-1)d^{(1-10)}ns^{(0-2)}$                                                          |
| (d) None of these                                                                        |
| 123. Atomic weight of hydrogen is -                                                      |

| (a) 1.008                                                                                                     |
|---------------------------------------------------------------------------------------------------------------|
| (b) 1.06                                                                                                      |
| (c) 1.020                                                                                                     |
| (d) 1.00                                                                                                      |
| 124. Electronic configuration of potassium is-                                                                |
| (a) 1s <sup>2</sup> , 2s <sup>2</sup> , 2p <sup>6</sup> , 3s <sup>2</sup> , 3p <sup>6</sup> , 4s <sup>1</sup> |
| (b) [Ar]4s <sup>1</sup>                                                                                       |
| (c)1s <sup>2</sup> , 2s <sup>2</sup> , 2p <sup>6</sup> , 3s <sup>2</sup> , 3p <sup>6</sup> , 4d <sup>1</sup>  |
| (d) Both (a) & (c)                                                                                            |
| 125. Which column is known as alkali and alkaline earth metals-                                               |
| (a) Group 3B, 4B                                                                                              |
| (b) Group 8A, 7A                                                                                              |
| (c) Group 1A, 2A                                                                                              |
| (d) Both (a) & (c)                                                                                            |
| 126. S-Block elements, in their outermost orbital/s accommodate only-                                         |
| (a) 2 electrons                                                                                               |
| (b) 3 electrons                                                                                               |
| (c) 4 electrons                                                                                               |
| (d) 1 electron                                                                                                |
| 127. In periodic table, where s- block elements are present?                                                  |
| (a) In middle                                                                                                 |
| (b) Right side                                                                                                |
| (c) Left side                                                                                                 |
| (d) At bottom                                                                                                 |

| 128. Which one of the alkali metals forms only the normal oxide $M_2\mathrm{O}$ on heating in air? |
|----------------------------------------------------------------------------------------------------|
| (a) Na                                                                                             |
| (b) Rb                                                                                             |
| (c) Li                                                                                             |
| (d) K                                                                                              |
| 129. Which one of the following elements are in s- block?                                          |
| (a) Sr                                                                                             |
| (b) Ar                                                                                             |
| (c) Kr                                                                                             |
| (d) Sc                                                                                             |
| 130. Atomic number of Cs is-                                                                       |
| (a) 54                                                                                             |
| (b) 55                                                                                             |
| (c) 53                                                                                             |
| (d) 37                                                                                             |
| 131. Among the following oxides, which is most basic?                                              |
| (a) MgO                                                                                            |
| (b) $Al_2O_3$                                                                                      |
| (c)ZnO                                                                                             |
| (d) $N_2O_5$                                                                                       |
| 132. The tendency to lose their valence electron easily by alkali metals makes them-               |
| (a) strong oxidizing agent                                                                         |
| (b) strong reducing agent                                                                          |
| (c) weak oxidizing agent                                                                           |

| (d) weak reducing agent                                                                                |
|--------------------------------------------------------------------------------------------------------|
| 133. Which one is the incorrect statement?                                                             |
| (a) Two types of s-block elements are possible.                                                        |
| (b) The s-block elements having only one electron in their s-orbital are called alkaline earth metals. |
| (c) Size of the alkali metals is larger compound to other element in a particular period.              |
| (d) All the statements are correct.                                                                    |
| 134. Find incorrect trend for alkaline earth metals-                                                   |
| (a) second ionization energy- Be <mg<ca<sr< td=""></mg<ca<sr<>                                         |
| (b) hydration enthalpy- Sr <ca<mg<be< td=""></ca<mg<be<>                                               |
| (c) density- Ca< Mg <be<sr< td=""></be<sr<>                                                            |
| (d) atomic size- Be <mg<ca<sr< td=""></mg<ca<sr<>                                                      |
| 135. Which one of the following is an amphoteric hydroxide?                                            |
| (a) $Mg(OH)_2$                                                                                         |
| (b) Be(OH) <sub>2</sub>                                                                                |
| (c) Ba(OH) <sub>2</sub>                                                                                |
| (d) Both (a) & (b)                                                                                     |
| 136. Which one of the following oxides is most acidic in nature-                                       |
| (a) MgO                                                                                                |
| (b) BaO                                                                                                |
| (c) BeO                                                                                                |
| (d) CsO                                                                                                |
| 137. On heating, which of the following releases CO <sub>2</sub> most easily?                          |
| (a) MgCO <sub>3</sub>                                                                                  |
| (b) K <sub>2</sub> CO <sub>3</sub>                                                                     |
|                                                                                                        |

| (c) CaCO <sub>3</sub>                                                                 |
|---------------------------------------------------------------------------------------|
| (d) Na <sub>2</sub> CO <sub>3</sub>                                                   |
| 138. Property of the alkaline earth metals that increases with their atomic number-   |
| (a) Solubility of their hydroxides in water.                                          |
| (b) Solubility of their sulphates in water.                                           |
| (c) Ionization energy.                                                                |
| (d) Electro-negativity.                                                               |
| 139. Solubility of the alkaline earth metal sulphates in water decreases in sequence- |
| (a) Ba>Mg>Sr>Ca                                                                       |
| (b) Sr>Ca>Mg>Ba                                                                       |
| (c) Ca>Sr>Ba>Mg                                                                       |
| (d) Mg>Ca>Sr>Ba                                                                       |
| 140. Which one of the following has smallest atomic radii?                            |
| (a) K                                                                                 |
| (b) Na                                                                                |
| (c) Li                                                                                |
| (d) Can't be predicted                                                                |
| 141. The formula of Plaster of Paris is-                                              |
| (a) CaSO <sub>4</sub> .H <sub>2</sub> O                                               |
| (b) CaSO <sub>4</sub> .2H <sub>2</sub> O                                              |
| (c) CaSO <sub>4</sub> .1/2H <sub>2</sub> O                                            |
| (d) CaSO <sub>4</sub>                                                                 |
| 142. Which of the following has highest lattice energy?                               |
| (a) RbF                                                                               |
| (b) NaF                                                                               |
| (0) 1141                                                                              |

| (c) CsF                                                                                 |
|-----------------------------------------------------------------------------------------|
| (d) KF                                                                                  |
| 143. Which one of the following has the strongest bond                                  |
| (a) CaF                                                                                 |
| (b) NaCl                                                                                |
| (c) Both (a) & (c)                                                                      |
| (d) None of these                                                                       |
| 144. Identify the correct statement-                                                    |
| (a) Plaster of paris can be obtained by hydration of gypsum.                            |
| (b)Plaster of paris is obtained by partial oxidation of gypsum.                         |
| (c) Gypsum is obtained by heating plaster of Paris.                                     |
| (d) Gypsum contains a lower percentage of calcium than plaster of Paris.                |
| 145. Which of the following products belongs to s-block elements?                       |
| (a) Bleaching powder                                                                    |
| (b) Washing soda                                                                        |
| (c) Baking soda                                                                         |
| (d) All of the above                                                                    |
| 146. The density of ice is less than water because of-                                  |
| (a) Hydrogen bonding interaction.                                                       |
| (b) Dipole- dipole interaction.                                                         |
| (c) Dipole-induced dipole interaction.                                                  |
| (d) None of these.                                                                      |
| 147. The correct order of the mobility of the alkali metal ions in aqueous solution is- |
| $(a)Na^{+} > K^{+} > Rb^{+} > Li^{+}$                                                   |
|                                                                                         |

(b) 
$$K^+ > Rb^+ > Na^+ > Li^+$$

(c) 
$$Li^+ > Na^+ > K^+ > Rb^+$$

(d) 
$$Rb^+ > K^+ > Na^+ > Li^+$$

148. Identify compound 'X' in the following reaction process-

X On Heating 
$$CO_2$$
 + Residue  $H_2O$  On boiling  $CO_2$  Y

- (a)  $Ca(HCO_3)_2$
- (b) CaCO<sub>3</sub>
- (c) Na<sub>2</sub>CO<sub>3</sub>
- (d)  $K_2CO_3$

149. In the following reaction, what is compound 'Y'?

$$X \xrightarrow{\text{On Heating}} CO_2 + \text{Residue}$$

$$\downarrow H_2O$$

$$\downarrow On boiling$$

$$Z \xrightarrow{\text{CO}_2} Y$$

- (a)  $Ca(HCO_3)_2$
- (b) CaCO<sub>2</sub>
- (c)  $Ca(OH)_2$
- (d) CaCO3

150. Among CaH<sub>2</sub>, BeH<sub>2</sub> and BaH<sub>2</sub>, the order of ionic character is-

(a) 
$$CaH_2 \le BeH_2 \le BaH_2$$

(b) 
$$BeH_2 < CaH_2 < BaH_2$$

(c) 
$$BeH_2 \le BaH_2 \le CaH_2$$

(d) 
$$BaH_2 < BeH_2 < CaH_2$$

#### **Unit IV P-Block Elements**

| Q151 | Which one of the follow | ring compounds | on strong heating | evolves ammonia ga | ıs? |
|------|-------------------------|----------------|-------------------|--------------------|-----|
|------|-------------------------|----------------|-------------------|--------------------|-----|

- (a)  $(NH_4)_2SO_4$
- (b) HNO<sub>3</sub>
- (c)  $(NH_4)_2Cr_2O_7$  (d)  $NH_4NO_3$

### Q.152 The compound $(SiH_3)_3N$ is

- (a) pyramidal and more basic than (CH<sub>3</sub>)<sub>3</sub>N
- (b) planar and less basic than  $(CH_3)_3N$
- (c) pyramidal and less basic than (CH<sub>3</sub>)<sub>3</sub>N
- (d) planar and more basic than (CH<sub>3</sub>)<sub>3</sub>N

#### Q.153 The correct order of acidic strength of oxy-acids of chlorine is

- (a)  $HCIO < HCIO_2 < HCIO_3 < HCIO_4$  (b)  $HCIO_4 < HCIO_3 < HCIO_2 < HCIO$
- (c)  $HCIO > HCIO_4 > HCIO_3 > HCIO_2$  (d)  $HCIO_4 < HCIO_2 > HCIO_3 > HCIO$

## Q.154 In a molecule of phosphorus (V) oxide, there are

- (a) 4P-P, 10P-O and 4P=O bonds
- (b) 12P-O and 4P=O bonds
- (c) 2P-O and 4P=P bonds
- (d) 6P-P, 12P-O and 4P=P bonds

## Q.155 The structures of $O_3$ and $N_3^-$ are

- (a) linear and bent, respectively
- (b) both linear

(c) both bent

(d) bent and linear, respectively

## Q.156 Molecular shapes of SF<sub>4</sub>, CF<sub>4</sub> and XeF<sub>4</sub> are

- (a) the same, with 2, 0 and 1 lone pairs of electrons respectively
- (b) the same, with 2, 0 and 1 lone pairs of electrons respectively
- (c) the different, with 0, 1 and 2 lone pairs of electrons respectively
- (d) the different, with 1, 0 and 2 lone pairs of electrons respectively
- Q.157 For and, the correct order of decreasing strength of hydrogen bonding is:

| Q.158 Which one of the following does not have intermolecular H-bonding? |                                                |                                    |              |                     |           |                          |  |  |  |  |
|--------------------------------------------------------------------------|------------------------------------------------|------------------------------------|--------------|---------------------|-----------|--------------------------|--|--|--|--|
|                                                                          | (a) H <sub>2</sub> O                           | (b) <i>o</i> -n                    | itro phenol  | (c) HF              |           | (d) CH <sub>3</sub> COOH |  |  |  |  |
| Q159                                                                     | H <sub>3</sub> BO <sub>3</sub> X Y             | B <sub>2</sub> O <sub>3</sub>      |              |                     |           |                          |  |  |  |  |
|                                                                          | if $T_1 < T_2$ then X and Y respectively are   |                                    |              |                     |           |                          |  |  |  |  |
|                                                                          | (a) X = Metaboric acid and Y = Tetraboric acid |                                    |              |                     |           |                          |  |  |  |  |
|                                                                          | (b) X = Tetraboric acid and Y = Metaboric acid |                                    |              |                     |           |                          |  |  |  |  |
|                                                                          | (c) X = Borax                                  | and Y = Meta                       | boric acid   |                     |           |                          |  |  |  |  |
|                                                                          | (d) X = Tetra                                  | boric acid and                     | Y = Borax    |                     |           |                          |  |  |  |  |
|                                                                          |                                                |                                    |              |                     |           |                          |  |  |  |  |
|                                                                          |                                                |                                    |              |                     |           |                          |  |  |  |  |
| Q.160                                                                    | Which of the structure?                        | e following h                      | as not a     | three dim           | ensional  | covalent network         |  |  |  |  |
|                                                                          | (a) SiO <sub>2</sub>                           | (b) Dia                            | mond         | (c) Grap            | hite      | (d) SiC                  |  |  |  |  |
| Q.161                                                                    | Which of the                                   | following state                    | ements is tr | ue?                 |           |                          |  |  |  |  |
|                                                                          | (a) Covalent                                   | bonds are dire                     | ctional      |                     |           |                          |  |  |  |  |
|                                                                          | (b) Ionic bond                                 | ds are nondire                     | ctional      |                     |           |                          |  |  |  |  |
|                                                                          | (c) A polar electronegati                      |                                    | ned betwee   | en two ato          | oms whicl | n have the same          |  |  |  |  |
|                                                                          | . , .                                          | ence of polar<br>ro dipole mom     |              | a polyatom          | ic linear | molecule suggests        |  |  |  |  |
| Q.162                                                                    | The octet rule                                 | e is not obeyed                    | d in :       |                     |           |                          |  |  |  |  |
|                                                                          | (a) H <sub>2</sub> O                           | (b) NH                             | (c)P         | Cl <sub>5</sub>     | (d) C     | $H_4$                    |  |  |  |  |
|                                                                          |                                                |                                    |              |                     |           |                          |  |  |  |  |
| Q.163                                                                    | Which of the                                   | following oxya                     | cids of sulp | hur contair         | า S-O-O-S | bonds?                   |  |  |  |  |
|                                                                          | (a) H <sub>2</sub> SO <sub>5</sub>             | (b) H <sub>2</sub> SO <sub>8</sub> | (c) H        | $I_2SO_3$           | (d) H     | $_2$ SO $_6$             |  |  |  |  |
| Q.164                                                                    | Which of the                                   | following spec                     | ies is isost | ructural wit        | th NH₃?   |                          |  |  |  |  |
|                                                                          | (a) PCI <sub>3</sub>                           | (b) H <sub>2</sub> C               | )            | (c) BF <sub>3</sub> | (d) P     | CI <sub>5</sub>          |  |  |  |  |
| Q.165 Which of the following aromatic in nature?                         |                                                |                                    |              |                     |           |                          |  |  |  |  |
|                                                                          |                                                |                                    |              |                     |           |                          |  |  |  |  |

(b)  $HF > H_2O > H_2S$ 

(d)  $H_2O > HF > H_2S$ 

(a) $H_2S > H_2O > HF$ 

(c)  $HF > H_2S > H_2O$ 

|       | (a) diborane                                                                                                                                                                                                                                               |                                                                                                                                       |             | (b) Bor              | azine                                                                         |                                                                                                                          |                                                                                     |                                   |                                 |
|-------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------|-------------|----------------------|-------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------|-----------------------------------|---------------------------------|
|       | (c) Sodium borohydride                                                                                                                                                                                                                                     |                                                                                                                                       |             | (d) diamond          |                                                                               |                                                                                                                          |                                                                                     |                                   |                                 |
| Q.166 | What is the                                                                                                                                                                                                                                                | covalency of oxyg                                                                                                                     | en in basi  | c Berry              | lium ac                                                                       | etate                                                                                                                    | [Be <sub>4</sub> O(                                                                 | OOCCH                             | <sub>3</sub> ) <sub>6</sub> ] ? |
|       | (a) 2                                                                                                                                                                                                                                                      | (b) 4                                                                                                                                 |             | (c) 6                |                                                                               |                                                                                                                          | (d) 8                                                                               |                                   |                                 |
| Q167  | Basic bery                                                                                                                                                                                                                                                 | llium acetate has a                                                                                                                   | a tetrahed  | dral unit            | of                                                                            |                                                                                                                          |                                                                                     |                                   |                                 |
|       | (a) Be                                                                                                                                                                                                                                                     | (b) C                                                                                                                                 | (c) O       | and B                | е                                                                             |                                                                                                                          | (d) C                                                                               | and O                             |                                 |
| Q168  | 8 The IUPAC name of basic Berrylium acetate                                                                                                                                                                                                                |                                                                                                                                       |             |                      |                                                                               |                                                                                                                          |                                                                                     |                                   |                                 |
|       | (а) Неха-µ-а                                                                                                                                                                                                                                               | $acetato(O,O')-\mu_4-ox$                                                                                                              | ko-tetrabe  | ryllium(             | II)                                                                           |                                                                                                                          |                                                                                     |                                   |                                 |
|       | (b) Неха-µ-а                                                                                                                                                                                                                                               | acetato(O,O')-µ <sub>3</sub> -ox                                                                                                      | ko-tetrabe  | ryllium(             | II)                                                                           |                                                                                                                          |                                                                                     |                                   |                                 |
|       | (c) μ-acetate                                                                                                                                                                                                                                              | e-µ <sub>3</sub> -oxo-tetraberyl                                                                                                      | lium(0)     |                      |                                                                               |                                                                                                                          |                                                                                     |                                   |                                 |
|       | (d) All of the                                                                                                                                                                                                                                             | above                                                                                                                                 |             |                      |                                                                               |                                                                                                                          |                                                                                     |                                   |                                 |
| Q169  | The incor                                                                                                                                                                                                                                                  | rect regarding bo                                                                                                                     | onding in E | $B_{2}H_{6}$         |                                                                               |                                                                                                                          |                                                                                     |                                   |                                 |
|       | (a) It is dimer of BH <sub>3</sub> (b) It contains two banana bond                                                                                                                                                                                         |                                                                                                                                       |             |                      |                                                                               |                                                                                                                          |                                                                                     | bond                              |                                 |
|       | (c) banana b<br>equal                                                                                                                                                                                                                                      | oond is also called                                                                                                                   | 2e-3c bor   | nd                   | (d) All                                                                       | В-Н                                                                                                                      | bond                                                                                | length                            | are                             |
| Q170  | The ampho                                                                                                                                                                                                                                                  | oteric oxide among                                                                                                                    | the follow  | ving is              |                                                                               |                                                                                                                          |                                                                                     |                                   |                                 |
|       | (a) B <sub>2</sub> O <sub>3</sub>                                                                                                                                                                                                                          | (b) CO                                                                                                                                |             | (c) SiC              | )2                                                                            |                                                                                                                          | (d) Al                                                                              | <sub>2</sub> O <sub>3</sub>       |                                 |
| Q171  | Which a effect?                                                                                                                                                                                                                                            | mong the following                                                                                                                    | g element   | t is said            | d to sh                                                                       | ow m                                                                                                                     | aximuı                                                                              | m inert                           | pair                            |
|       | (a) Ga                                                                                                                                                                                                                                                     | (b) Pb                                                                                                                                | (c) Sn      |                      | (d) In                                                                        |                                                                                                                          |                                                                                     |                                   |                                 |
| Q172  | The orde                                                                                                                                                                                                                                                   | r of boiling point of                                                                                                                 | f given hyd | dride                |                                                                               |                                                                                                                          |                                                                                     |                                   |                                 |
|       | (a) H <sub>2</sub> O <h<sub>2S</h<sub>                                                                                                                                                                                                                     | S <h<sub>2Se<h<sub>2Te</h<sub></h<sub>                                                                                                |             | (b) H <sub>2</sub> S | Se <h<sub>2S</h<sub>                                                          | S <h<sub>2O</h<sub>                                                                                                      | <h<sub>2Te</h<sub>                                                                  |                                   |                                 |
|       | (c) H <sub>2</sub> S <h<sub>2S</h<sub>                                                                                                                                                                                                                     | Se <h<sub>2O<h<sub>2Te</h<sub></h<sub>                                                                                                |             | (d) H <sub>2</sub> S | S <h<sub>2Se</h<sub>                                                          | e <h<sub>2T</h<sub>                                                                                                      | e <h<sub>2O</h<sub>                                                                 |                                   |                                 |
| Q173  | The orde                                                                                                                                                                                                                                                   | r of acidic nature o                                                                                                                  | of hydra ac | cids is              |                                                                               |                                                                                                                          |                                                                                     |                                   |                                 |
|       | (a) HI <hf<h< td=""><td>HCI<hbr< td=""><td></td><td>(b) HF</td><td><hcl<< td=""><td>HBr<h< td=""><td>II</td><td></td><td></td></h<></td></hcl<<></td></hbr<></td></hf<h<>                                                                                  | HCI <hbr< td=""><td></td><td>(b) HF</td><td><hcl<< td=""><td>HBr<h< td=""><td>II</td><td></td><td></td></h<></td></hcl<<></td></hbr<> |             | (b) HF               | <hcl<< td=""><td>HBr<h< td=""><td>II</td><td></td><td></td></h<></td></hcl<<> | HBr <h< td=""><td>II</td><td></td><td></td></h<>                                                                         | II                                                                                  |                                   |                                 |
|       | (c) HBr <hcl< td=""><td><hi<hf< td=""><td></td><td>(d) HC</td><td>I<hf<< td=""><td>HBr<h< td=""><td>II</td><td></td><td></td></h<></td></hf<<></td></hi<hf<></td></hcl<>                                                                                   | <hi<hf< td=""><td></td><td>(d) HC</td><td>I<hf<< td=""><td>HBr<h< td=""><td>II</td><td></td><td></td></h<></td></hf<<></td></hi<hf<>  |             | (d) HC               | I <hf<< td=""><td>HBr<h< td=""><td>II</td><td></td><td></td></h<></td></hf<<> | HBr <h< td=""><td>II</td><td></td><td></td></h<>                                                                         | II                                                                                  |                                   |                                 |
| Q174  | The orde                                                                                                                                                                                                                                                   | r of bond angle of                                                                                                                    | hydra acid  | ds is                |                                                                               |                                                                                                                          |                                                                                     |                                   |                                 |
|       | (a) PH <sub>3</sub> <nh< td=""><td><sub>3</sub><ash<sub>3<sbh<sub>3</sbh<sub></ash<sub></td><td></td><td></td><td>(b) PH</td><td>₃<as⊦< td=""><td>I<sub>3</sub><sb⊦< td=""><td>I<sub>3</sub><nh<sub>3</nh<sub></td><td></td></sb⊦<></td></as⊦<></td></nh<> | <sub>3</sub> <ash<sub>3<sbh<sub>3</sbh<sub></ash<sub>                                                                                 |             |                      | (b) PH                                                                        | ₃ <as⊦< td=""><td>I<sub>3</sub><sb⊦< td=""><td>I<sub>3</sub><nh<sub>3</nh<sub></td><td></td></sb⊦<></td></as⊦<>          | I <sub>3</sub> <sb⊦< td=""><td>I<sub>3</sub><nh<sub>3</nh<sub></td><td></td></sb⊦<> | I <sub>3</sub> <nh<sub>3</nh<sub> |                                 |
|       | (c) NH <sub>3</sub> <ph<sub>3</ph<sub>                                                                                                                                                                                                                     | <sub>3</sub> <ash<sub>3<sbh<sub>3</sbh<sub></ash<sub>                                                                                 |             |                      | (d) Sbl                                                                       | H <sub>3</sub> <as< td=""><td>H<sub>3</sub><pf< td=""><td>I<sub>3</sub><nh<sub>3</nh<sub></td><td></td></pf<></td></as<> | H <sub>3</sub> <pf< td=""><td>I<sub>3</sub><nh<sub>3</nh<sub></td><td></td></pf<>   | I <sub>3</sub> <nh<sub>3</nh<sub> |                                 |

| Q175                                                                           | rne                                            | correct order                                                                           | of Stability of nyor                                                                                   | a acios                                                                       | SIS                                                                                                      |                                   |                                             |  |  |
|--------------------------------------------------------------------------------|------------------------------------------------|-----------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------|-----------------------------------|---------------------------------------------|--|--|
|                                                                                | (a) PH                                         | I <sub>3</sub> <nh<sub>3<ash<sub>3&lt;</ash<sub></nh<sub>                               | SbH <sub>3</sub>                                                                                       | (b) Pł                                                                        | H <sub>3</sub> <ash<sub>3<sbl< th=""><th>H<sub>3</sub><nh<sub>3</nh<sub></th><th>3</th></sbl<></ash<sub> | H <sub>3</sub> <nh<sub>3</nh<sub> | 3                                           |  |  |
| (c) NH <sub>3</sub> <ph<sub>3<ash<sub>3<sbh<sub>3</sbh<sub></ash<sub></ph<sub> |                                                |                                                                                         | :SbH <sub>3</sub>                                                                                      | (d) SbH <sub>3</sub> <ash<sub>3<ph<sub>3<nh<sub>3</nh<sub></ph<sub></ash<sub> |                                                                                                          |                                   |                                             |  |  |
| togethe                                                                        | er and                                         | -                                                                                       | de of two tetrahedra<br>should be written a<br>O                                                       |                                                                               | wo triangular                                                                                            | units jo                          | oined                                       |  |  |
|                                                                                | Consider the following statements about borax: |                                                                                         |                                                                                                        |                                                                               |                                                                                                          |                                   |                                             |  |  |
| i                                                                              | a.                                             | Each boron a                                                                            | tom has four B–O b                                                                                     | onds                                                                          |                                                                                                          |                                   |                                             |  |  |
|                                                                                | b.                                             | Each boron a                                                                            | tom has three B–O                                                                                      | bonds                                                                         |                                                                                                          |                                   |                                             |  |  |
| (                                                                              | C.                                             | Two boron at<br>O bonds                                                                 | oms have four B–O                                                                                      | bonds                                                                         | while other t                                                                                            | wo hav                            | e three B–                                  |  |  |
| (                                                                              | d.                                             | Each boron a                                                                            | tom has one –OH g                                                                                      | jroups                                                                        |                                                                                                          |                                   |                                             |  |  |
| :                                                                              | Select                                         | correct stater                                                                          | nent(s):                                                                                               |                                                                               |                                                                                                          |                                   |                                             |  |  |
|                                                                                | (a) a, I                                       | b                                                                                       | (b) b, c                                                                                               |                                                                               | (c) c, d                                                                                                 |                                   | (d) a, c                                    |  |  |
| Q177                                                                           | Which                                          | of the followi                                                                          | ng ions has bond o                                                                                     | rder eq                                                                       | ual to the bor                                                                                           | nd orde                           | r of N <sub>2</sub> <sup>+</sup>            |  |  |
|                                                                                | (a) N <sub>2</sub>                             |                                                                                         | (b) O <sub>2</sub> <sup>+</sup>                                                                        |                                                                               | (c) O <sub>2</sub>                                                                                       |                                   | (d) $O_2^{-2}$                              |  |  |
| Q178                                                                           | The co                                         | orrect increasi                                                                         | ng order of boiling p                                                                                  | oints o                                                                       | of hydra acids                                                                                           | is                                |                                             |  |  |
|                                                                                |                                                | (a) PH <sub>3</sub> <nh<sub>3&lt;<br/>(c) NH<sub>3</sub><ph<sub>3&lt;</ph<sub></nh<sub> | • •                                                                                                    |                                                                               | (b) PH <sub>3</sub> <asi<br>(d) SbH<sub>3</sub><as< th=""><th>•</th><th>0</th></as<></asi<br>            | •                                 | 0                                           |  |  |
| -                                                                              | The c                                          | •                                                                                       | which nitrogen exhib                                                                                   |                                                                               | est oxidation $N_2H_4$                                                                                   |                                   |                                             |  |  |
| Q180.<br>(a)                                                                   | The c                                          | correct order o                                                                         | f the reducing stren<br>< SbH <sub>3</sub> < BiH <sub>3</sub><br>< SbH <sub>3</sub> < BiH <sub>3</sub> | gth of t<br>(b) NI                                                            | the given com<br>H <sub>3</sub> < AsH <sub>3</sub> < F                                                   | pound:<br>PH <sub>3</sub> < S     | s is<br>SbH <sub>3</sub> < BiH <sub>3</sub> |  |  |
| Q181.<br>(a)<br>Q182.                                                          | Which<br>HCIO<br>Cons                          | h of the given (the given ider the given                                                | acids is most acidic<br>b) HClO <sub>3</sub>                                                           | in natu                                                                       | 0                                                                                                        | J                                 | HBrO                                        |  |  |
|                                                                                |                                                | l number of osition is                                                                  | the compounds the                                                                                      | nose e                                                                        | volve oxyge                                                                                              | n gas                             | on thermal                                  |  |  |

| (a)   | One                                                                         | (b) Two              |                        | (c)Tl    | hree       |             | (d)Four             |          |
|-------|-----------------------------------------------------------------------------|----------------------|------------------------|----------|------------|-------------|---------------------|----------|
| Q183. | 3. The most common oxidation state of lanthanoids is                        |                      |                        |          |            |             |                     |          |
| (a)   | +4                                                                          | (b) +2               |                        | (c)+;    | 3          |             | (d)+5               |          |
| Q184. | . All of the given ions are coloured except                                 |                      |                        |          |            |             |                     |          |
| (a)   | Ni <sup>2+</sup>                                                            | (b) Cr <sup>2+</sup> |                        | (c)Ti    | 3+         |             | (d)Sc <sup>3+</sup> |          |
| Q185. | The value                                                                   | of E°                | (Cu <sup>2+</sup> /Cu) | for      | copper     | is          | +0.34               | V.       |
| Th    | e reason for this v                                                         | ⁄alue is             |                        |          |            |             |                     |          |
| (a)   | a) High enthalpy of atomisation and high hydration enthalpy                 |                      |                        |          |            |             |                     |          |
| (b)   | High enthalpy of                                                            | atomisat             | ion and low            | hydrati  | on enthal  | ру          |                     |          |
| (c)   | c) Low enthalpy of atomisation and high hydration enthalpy                  |                      |                        |          |            |             |                     |          |
| (d)   | (d) Low enthalpy of atomisation and low hydration enthalpy                  |                      |                        |          |            |             |                     |          |
| Q186. | Q186. Which of the following is not a property of interstitial compounds?   |                      |                        |          |            |             |                     |          |
| (a)   | (a) They retain their metallic conductivity                                 |                      |                        |          |            |             |                     |          |
| (b)   | b) They are chemically inert                                                |                      |                        |          |            |             |                     |          |
| (c)   | c) They are very hard                                                       |                      |                        |          |            |             |                     |          |
| (d)   | They have less r                                                            | nelting po           | oint as comp           | ared to  | the pure   | metal       |                     |          |
| Q187. | The shape of Xe                                                             | $OF_4$ is            |                        |          |            |             |                     |          |
| (a)   | Pyramidal                                                                   | (b)                  | Square pyra            | amidal   |            |             |                     |          |
| (c)   | Square planar                                                               | (d)                  | Bent-T                 |          |            |             |                     |          |
| Q188. | Interhalogen whi                                                            | ch is very           | y unstable aı          | mong t   | he followi | ng is       |                     |          |
| (a)   | ICI                                                                         | (b) BrCl             |                        |          |            |             |                     |          |
| (c)   | IF                                                                          | (d) IBr              |                        |          |            |             |                     |          |
| Q189. | Which of the give                                                           | en noble             | gases has h            | ighest   | positive e | lectror     | n gain enth         | alpy?    |
| (a)   | Kr                                                                          | (b) Xe               |                        |          |            |             |                     |          |
| (c)   | Rn                                                                          | (d) Ne               |                        |          |            |             |                     |          |
| Q190. | 90. Which of the given chemical reaction will result in disproportionation? |                      |                        |          |            |             |                     |          |
| (a)   | a) Reaction of chlorine with hot and conc. NaOH                             |                      |                        |          |            |             |                     |          |
| (b)   | ) Reaction of chlorine with fluorine                                        |                      |                        |          |            |             |                     |          |
| (c)   | (c) Reaction of ammonium chloride with lime                                 |                      |                        |          |            |             |                     |          |
| (d)   | Thermal decomp                                                              | osition o            | f ammonium             | nitrate  | ;          |             |                     |          |
| Q191. | 191. The metal of $d$ -block with the lowest melting point belongs to       |                      |                        |          |            |             |                     |          |
| (a)   | Group 8                                                                     | (b) Grou             | up 10                  |          |            |             |                     |          |
| (c)   | Group 12                                                                    | (d) Grou             | up 11                  |          |            |             |                     |          |
| Q192. | Number of mole                                                              | s of req             | uired to oxic          | lise 1 r | nol of Na  | $l_2S_2O_3$ | in faintly a        | alkaline |
| me    | edium is                                                                    |                      |                        |          |            |             |                     |          |
| (a)   | 2.33                                                                        | (b) 4.33             |                        | (c)6.    | 67         | (d)2.67     | 7                   |          |
| Q193. | To test chloride                                                            | ions, pot            | assium dich            | romate   | e is adde  | d to th     | e compou            | nd and   |

the mixture is acidified using sulphuric acid. The chemical formula of the compound which is obtained in the form of red vapours is (a)  $CrO_2Cl_2$  (b)  $Na_2CrO_4$  (c)  $Cr_2(SO_4)_3$  (d)  $KHSO_4$ 

| Q19 | 4.                                                                  | When sulphur is oxidised using conc $H_2SO_4$ the obtained major product is                      |                                                                                                                            |                 |                                          |                  |                            |  |
|-----|---------------------------------------------------------------------|--------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------|-----------------|------------------------------------------|------------------|----------------------------|--|
|     | (a)                                                                 | SO <sub>2</sub>                                                                                  | (b) H <sub>2</sub> S <sub>2</sub> O <sub>8</sub>                                                                           | (c)             | H <sub>2</sub> SO                        | <sub>4</sub> (d) | $H_2S$                     |  |
| Q19 | 5.                                                                  | In which oxidation state cerium acts as a good oxidising agent?                                  |                                                                                                                            |                 |                                          |                  |                            |  |
|     | ` '                                                                 | +2                                                                                               | (b) +3                                                                                                                     | ` '             | +4                                       | ` '              | +6                         |  |
| Q19 | 6. Which of the given species has higher spin only magnetic moment? |                                                                                                  |                                                                                                                            |                 |                                          |                  | noment?                    |  |
|     | (a)                                                                 | Mn <sup>2+</sup>                                                                                 | (b) Mn <sup>+</sup>                                                                                                        | (c)             | Fe <sup>3+</sup>                         | (d)              | Fe <sup>2+</sup>           |  |
| Q19 | 7.                                                                  | The hybridisation                                                                                | of phosphorus in $P_4C$                                                                                                    | <sub>6</sub> is |                                          |                  |                            |  |
|     | (a)                                                                 | sp                                                                                               | (b) sp <sup>2</sup>                                                                                                        | (c)             | $sp^3$                                   | (d)              | dsp <sup>2</sup>           |  |
| Q19 | 8                                                                   | The increasing                                                                                   | order of electron gain                                                                                                     | enthal          | oy with                                  | negativ          | ve sign                    |  |
|     | (                                                                   | (a) I < Br < F< Cl(I                                                                             | o) I < Cl < B r <f< td=""><td>(c) C</td><td>  &lt;   &lt; E</td><td>3r &lt; F</td><td>(d)I &lt; CI &lt; F&lt; Br</td></f<> | (c) C           | <   < E                                  | 3r < F           | (d)I < CI < F< Br          |  |
| Q19 | 9                                                                   | The correct state                                                                                | ement among the follo                                                                                                      | wing is         | 6                                        |                  |                            |  |
|     | (                                                                   | (a) $H_2S$ is less acidic than $H_2O$ .                                                          |                                                                                                                            |                 | (b) $H_2S$ is more acidic than $H_2Se$ . |                  |                            |  |
|     | (                                                                   | (c) NH <sub>3</sub> is more b                                                                    | asic than PH <sub>3</sub> .                                                                                                | (d) PH          | H <sub>3</sub> is mo                     | ore bas          | ic than SbH <sub>3</sub> . |  |
| Q20 | 0                                                                   | Which one is co                                                                                  | rrect about PBr <sub>5</sub>                                                                                               |                 |                                          |                  |                            |  |
|     | (                                                                   | (a) gas PBr <sub>5</sub> has sp³ hybridization state                                             |                                                                                                                            |                 |                                          |                  |                            |  |
|     | (b)Solid PBr <sub>5</sub> exist as a free covalent molecule         |                                                                                                  |                                                                                                                            |                 |                                          |                  |                            |  |
|     | (                                                                   | (c) Solid PBr <sub>5</sub> exists as ionic pair [PCl <sub>4</sub> ] <sup>+</sup> Br <sup>-</sup> |                                                                                                                            |                 |                                          |                  |                            |  |
|     | (                                                                   | (d) In Solid PBr <sub>5</sub> P is in sp³ and sp³d² hybridization state                          |                                                                                                                            |                 |                                          |                  |                            |  |
|     |                                                                     |                                                                                                  |                                                                                                                            |                 |                                          |                  |                            |  |